

GIẢI TOÁN ĐỂ TÌM SỐ DƯ CỦA PHÉP CHIA ĐA THỰC

f(x) CHO g(x) = ax + b

TRÂN NGỌC DUY

(GV THCS Nguyễn Bá Loan, Mộ Đức, Quảng Ngãi)

 \oint ề tìm số dư của phép chia đa thức f(x) cho nhị thức g(x) = ax + b, ta có thể tiến hành theo các cách sau:

- 1. Chia thông thường
- 2. Áp dụng định lí Bezout
- 3. Áp dụng sơ đồ Horner

Bài viết này hướng dẫn làm theo cách 2 và 3 có sử dụng máy tính cầm tay (MTCT).

1. ĐỊNH LÍ BEZOUT

Giá sử f(x) là đa thức của biến x và $a \in \mathbb{R}$. Khi thay x = a thì được f(a), là giá trị của f(x) tại a.

Nếu f(a) = 0 thì f(x) có nghiệm là x = a. Dịnh li Bezout

Dư trong phép chia đa thức f(x) cho nhị thức g(x) = x - a là hằng số bằng f(a).

*Thí dụ 1. Tim số dư trong phép chia $f(x) = 7x^5 - 30x^4 - 1975$ cho g(x) = x - 19.54.

Lời giải

Theo Định lí Bezout số dư trong phép chia f(x) cho g(x) là f(19,54). Để tính f(19,54) bằng MTCT ta có thể làm theo hai cách sau: Cách 1. Sử dụng phím nhớ A, B, C, D, E, F, X, Y, M, AnS.

Gán 19,54 vào biến nhớ X: Ân 1 9 •
 5 4 ■ \$10 X màn hình hiện 19.54 → X (hoặc ấn 19,54 ■).

(hoặc nhập biểu thức: 7Ans5 - 30Ans4 - 1975)

- Ân màn hình hiện 15564423.85.
Vây f(19,54) = 15564423,85.

Cách 2. Sử dụng chức năng CALC

- Nhập biểu thức 7X5 - 30X4 - 1975

 Lưu biểu thức: Ấn ^(MS) máy hỏi X? Ấn tiếp các phím 19 • 5 4 ■ màn hình hiện 15564423.85.

Kết quả f(19,54) = 15 564 423,85.

Nhận xét. Dư trong phép chia đa thức f(x) cho nhị thức g(x) = ax + b ($a \ne 0$) là hằng số bằng $f\left(\frac{-b}{a}\right)$.

★Thí dụ 2. Tim số dư trong phép chia

$$f(x) = 26x^3 + 1931x^2 + 9x - 1982$$
$$g(x) = 20x + 11.$$

Lời giải. Ta có số dư là $f\left(\frac{-11}{20}\right)$. Để tính giá

trị này bằng MTCT ta làm như sau:

Nhập biểu thức 26X³ + 1931X² + 9X − 1982
 Lưu biểu thức: Ẩn phím ஊ máy hỏi X? Ẩn tiếp các phím □ 1 1 □ 20 □
 Máy hiện kết quả −1407.14825.

Vậy $f\left(\frac{-11}{20}\right) = -1407,14825. \square$

2. SO ĐO HORNER

Giá sử khi chia đa thức

 $P_n(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$ cho nhị thức x - m ta được thương là đa thức

 $Q_n(x) = b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + ... + b_1x + b_0$ và số dư r thì giữa các hệ số a_n , a_{n-1} , a_{n-2} , ..., a_1 , a_0 và b_{n-1} , b_{n-2} , ..., b_1 , b_0 , r có mối quan hệ sau đây

bn-1 "	a_n	
bn-2 "	$m.b_{n-1}$	$+ a_{n-1}$

$$b_0 = m.b_1 + a_1$$

 $r = m.b_0 + a_0$.

Minh hoạ bằng sơ đồ Homer sau

	a_n	a _{n-1}	a _{n-2}
m	$b_{n-1}=a_n$	$b_{n-2}=m.b_{n-1}+a_{n-1}$	$b_{n-3}=m.b_{n-2}+a_{n-2}$

		a_1	a ₀
m	10	$b_0 = m.b_1 + a_1$	$r = m.b_0 + a_0$

*Thi dụ 3. Tim thương và số die trong phép chia $f(x) = 2x^4 - 3x^2 + 2013x - 2014$

cho
$$g(x) = x + 195$$
.

Lời giải. Gọi đa thức thương là

$$q(x) = b_3 x^3 + b_2 x^2 + b_1 x + b_0$$
 và số dư r.

Ta ghi bảng (sơ đồ Horner)

	2	0	-3	2013	-2014
-195	$b_3 = 2$	b2	b_1	b0	r

Để tính b_2 , b_1 , b_0 , r bằng MTCT ta làm như sau Gán -195 vào biến nhớ A:

ta được -390, tức là $b_2 = -390$.

Án tiếp X MA + 13 =

ta được 76047, tức là $b_1 = 76047$.

Ân tiếp X 🗪 A 🛨 2013 🖃

ta được -14 827 152, tức là $b_0 = -14827152$.

Án tiếp X 100 A + (-) 2014

ta được 2 891 292 626, tức là r = 2 891 292 626.

Vậy đa thức thương

$$q(x) = 2x^3 - 390x^2 + 76047x - 14827152$$

và số dư r = 2 891 292 626. a

Nhận xét. Trường hợp đa thức chia là

g(x) = ax + b thì $m = -\frac{b}{a}$, các hệ số của đa thức thương q(x) phải chia thêm cho a. Tức là

	a _n	a_{n-1}	a _{n-2}
m	$b_{n-1}=a_n$	$b_{n-2} = m.b_{n-1} + a_{n-1}$	$b_{n-3} = m.b_{n-2} + a_{n-2}$
Hệ số q(x)	$\frac{b_{n-1}}{a}$	$\frac{b_{n-2}}{a}$	$\frac{b_{n-3}}{a}$

		a ₁	ao
m	nio.	$b_0 = m.b_1 + a_1$	$r = m.b_0 + a_0$
Hệ số		<u>b</u> 0	nh theo các ore
q(x)		a	Chia thông thu

★Thí dụ 4. Tim thương và số dư trong phép chia đa thức

$$f(x) = 3x^4 + 5x^3 - 4x^2 + 2x - 7$$

cho
$$g(x) = 4x - 5$$
.

Lời giái. Sử dụng MTCT, cách làm tương tự như Thí dụ 3 với $m = \frac{5}{4}$.

Ân tiếp $\frac{5}{4}$ \bigcirc A \bigcirc 3 \bigcirc 5 ta được $\frac{35}{4}$.

Ân tiếp X 4 + 1-14 = ta được 111.

Án tiếp ■ • A • 2 = ta được $\frac{683}{64}$.

Ân tiếp **X → 1** → **7** = ta được 6 $\frac{87}{256}$.

Do đó ta có báng

	3	5	-4	2	-7
5 4	3	$\frac{35}{4}$	$\frac{111}{16}$	$\frac{683}{64}$	$6\frac{87}{256}$
Các hệ số của đa thức thương	3 4	35 16	111 64	683 256	Olin 15 30 Eg3 E mi state

Vậy đa thức thương

$$Q(x) = \frac{3}{4}x^3 + \frac{35}{16}x^2 + \frac{111}{64}x + \frac{683}{256}$$

TOÁN HỌC

Đặc san 11

và số dư
$$r = 6\frac{87}{256}$$
. □

Chú ý. Các hệ số của đa thức thương ta phải chia cho a (a = 4).

*Thí dụ 5. Tim a để đa thức $P(x) = x^4 + 7x^3 + 2x^2 + 13x + a$ chia hết cho x + 6.

Lời giải. Để
$$P(x)$$
 : $(x+6) \Leftrightarrow P(-6) = 0$.
Gọi $Q(x) = x^4 + 7x^3 + 2x^2 + 13x$
thì có $Q(-6) + a = 0$.
Sử dụng MTCT để tính $Q(-6)$ như sau:
Nhập biểu thức $X^4 + 7X^3 + 2X^2 + 13X$

Ân \bigcirc máy hỏi X? Ân tiếp các phím \bigcirc \bigcirc \bigcirc màn hình hiện -222. Vậy Q(-6) = -222. Do đó -222 + a = 0. Vậy a = 222. \Box

BÀITAP

- 1. Tim số dư của mỗi phép chia sau
- a) $(x^4 + x^3 + 2x^2 x + 1) : (x 3);$
- b) $(x^3 9x^2 35x + 7) : (x 12)$;
- c) $(2x^3 + x^2 3x + 5) : (x + 11);$
- d) $(4x^5 + 3x^3 4x + 5)$: (2x + 11);
- e) $(3x^4 + 5x^3 4x^2 + 2x 7) : (-3x + 2)$;
- f) $(5x^4 4x^3 + 2x^2 + 7x + 8) : (3x 1)$.
- Tîm số dư và đa thức thương của phép chia f(x) cho g(x) sau
- a) $f(x) = x^4 + x^3 + 2x^2 x + 1$ và g(x) = x 3;
- b) $f(x) = x^3 9x^2 35x + 7 \text{ và } g(x) = x 12;$
- c) $f(x) = 2x^3 + x^2 3x + 5 \text{ và } g(x) = x + 11;$
- d) $f(x) = 4x^5 + 3x^3 4x + 5$
 - vag(x) = 2x + 11;
- e) $f(x) = 3x^4 + 5x^3 4x^2 + 2x 7$ và g(x) = -3x + 2;
- f) $f(x) = 5x^4 4x^3 + 2x^2 + 7x + 8$ và g(x) = 3x - 1.
- 3. Tim $m \text{ de } f(x) = 2x^4 + 3x^2 5x + 2005 m$ chia het cho x - 12.
- 4. Xác định giá trị k để đa thức
 f(x) = x⁴ 9x³ +21x² + x + k
 chia hết cho đa thức g(x) = x² x 2.

- 5. Cho đa thức $f(x) = 3x^4 x^3 + 2x^2 x + m$.
- a) Xác định m để f(x) chia hết cho x-2.
- b) Với m tìm được ở câu a. Xác định đa thức thương và số dư của f(x) chia cho x + 3.
- 6. Cho đa thức

$$P(x) = x^5 + 2x^4 - 3x^3 + 4x^2 - 5x + m.$$

- a) Tîm số dư trong phép chia P(x) cho x − 2,5
 khi m = 2003;
- b) Tính giá trị của m để đa thức P(x) chia hết cho x - 2,5.
- c) Muốn đa thức P(x) có nghiệm x = 2 thì m có giá trị là bao nhiều?
- 7. Cho hai đa thức $P(x) = x^4 + 5x^3 4x^2 + 3x + m$ và $Q(x) = x^4 + 4x^3 - 3x^2 + 2x + n$.
- a) Tim giá trị của m và n để các đa thức P(x)
 và Q(x) chia hết cho x 2;
- b) Xét đa thức R(x) = P(x) Q(x), với giá trị m, n vừa tìm được. Hãy chứng tỏ rằng đa thức R(x) chỉ có một nghiệm duy nhất.
- 8. Cho da thức $P(x) = 6x^3 7x^2 16x + m$.
- a) Với điều kiện nào của m thì đa thức P(x) chia hết cho 2x + 3;
- b) Với m tìm được ở câu a. Hãy tìm số dư r khi chia đa thức P(x) cho 3x - 2;
- c) Với m tìm được ở câu a. Hãy phân tích đa thức P(x) ra tích của các thừa số bậc nhất;
- d) Tim m và n để hai đa thức

$$P(x) = 6x^3 - 7x^2 - 16x + m$$

và $Q(x) = 2x^3 - 5x^2 - 13x + n$
cùng chia hết cho $x - 2$;

- e) Với n tìm được ở câu trên, hãy phân tích
 Q(x) của các thừa số bậc nhất.
- 9. Cho đa thức

$$P(x) = x^5 + ax^4 + bx^3 + cx^2 + dx + e$$
.
Biết $P(1) = 1$, $P(2) = 4$, $P(3) = 9$, $P(4) = 16$, $P(5) = 25$.

- a) Tính các giá trị P(6), P(7), P(8), P(9);
- b) Viết lại đa thức P(x) với các hệ số là số nguyên.